High accuracy ¹⁸O(p, α)¹⁵N reaction rate at AGB nucleosynthesis relevant temperatures

M. La Cognata,¹ C. Spitaleri,¹ and A. M. Mukhamedzhanov ¹*INFN Laboratori Nazionali del Sud & DMFCI Universit`a di Catania, Catania, Italy*

The ${}^{18}O(p,\alpha){}^{15}N$ reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as ¹⁹F, ¹⁸O and ¹⁵N. Fluorine is synthesized in the intershell region of asymptotic giant branch stars, together with s-elements, by α radiative capture on ¹⁵N, which in turn is produced in the ¹⁸O proton-induced destruction. Peculiar ¹⁸O abundances are observed in R-Coronae Borealis stars, having ${}^{16}O/{}^{18}O \le 1$, hundreds of times smaller than the galactic value. In the framework of the double degenerate scenario, a quantitative account of such abundances can be provided if H-rich material is ingested and the ${}^{18}O(p,\alpha){}^{15}N$, ${}^{18}O(p,\alpha){}^{15}N(p,\alpha){}^{12}C$ chain is activated, thus reducing ¹⁸O overproduction. Finally, there is no definite explanation of the ¹⁴N/¹⁵N ratio in presolar grains formed in the outer layers of asymptotic giant branch stars. Again, such an isotopic ratio is influenced by the ${}^{18}O(p,\alpha){}^{15}N$ reaction that might increase the ${}^{15}N$ yield during non-convective mixing episodes. In this work, a high accuracy ${}^{18}O(p,\alpha){}^{15}N$ reaction rate is proposed, based on the simultaneous fit of direct measurements and the results of a new Trojan Horse experiment. Indeed, current determinations are uncertain because of the poor knowledge of the resonance parameters of key levels of ¹⁹F. In particular, we have focused on the study of the broad 660 keV $\frac{1}{2}$ resonance corresponding to the 8.65 MeV level of ¹⁹F. Since $\Gamma \sim 100-300$ keV, it determines the low-energy tail of the resonant contribution to the cross section and dominates the cross section at higher energies. We get a factor of 2 larger reaction rate above T~ 0.5×10^9 based on our new improved determination of its resonance parameters compared to previous estimations, which could strongly influence present-day astrophysical model predictions. This work has been published in Astrophysical Journal.